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Abstract

The rise of fraudulent communication attempts has become a significant threat to 

individuals and society at large. According to the 2021 Robocall Report by YouMail, 

Americans received 50.5 billion robocalls in 2021. This is 14% less than the peak of 58 

billion robocalls received in 2019, but is still alarming enough to highlight the need for 

effective spam detection and filtering has never been greater. While previous research 

has explored various techniques for spam detection, there is still much room for 

improvement.


The objective of this independent research paper is to explore common 

techniques for spam detection, including Bayesian filtering, decision trees, and neural 

networks, and to develop a machine-learning model to improve the performance of 

spam call filtering for various telecommunication companies. This will be 

accomplished by analyzing data sets on the success rate of spam call filtering and 

evaluating the performance of different techniques.


Through the analysis of data sets and evaluation of different techniques, this 

research has identified several key factors that contribute to the success of spam call 

filtering. The resulting machine-learning model has the potential to significantly 

improve the performance of spam detection and filtering for various 

telecommunication companies, thereby reducing the number of successful fraudulent 

communication attempts and protecting individuals and society from harm.


While this study provides valuable insights into the performance of different spam 

detection techniques, it is limited by the availability and quality of the data sets used 

for analysis, as well as potential challenges such as class imbalance and overfitting.
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Performing a Competitive Analysis of Spam Call 
Detection Algorithms


Analyzing the filtering techniques of telecommunication agencies and technology partners.


The scam industry has become more prevalent, and social media has created a 

platform to depict its inner workings. One notable influencer is JayBeeTV, an American 

YouTuber who exposes and parodies scammers' tactics used at call centers. His ability 

to educate the public on these tactics and identify scams piqued my interest in using 

embedded systems to develop predictive models for detecting illegitimate 

communications and reporting scammer information to users, service providers, and 

local authorities.


Fraudulent communication attempts, including spoof emails, impersonation of 

powerful entities, and automated communication, have become increasingly 

common, with the average American receiving over three scam calls and other 

attempts in a day. Scammers use social engineering techniques to trick unsuspecting 

victims into relinquishing their information, finances, and technology control, leading 

to significant consequences on their financial, physical, and personal well-being.


As these forms of fraud become a prevalent part of our daily lives, social media 

has found a market online for depicting the ins and outs of the scam industry. One 

influencer that has become popular for this is American YouTuber JayBeeTV. When I 

started watching the channel, I was thoroughly entertained by the elaborate schemes 

used to pester the scammers at their call centers. I then became fascinated by the 

host’s ability to mirror, parody, and reciprocate the scammer’s tactics. He would often 

educate the public on the steps he took to identify the scams and the strategies that 

the scammers use to trick unsuspecting callers.


I began to think about how the embedded systems within our devices can be 

used to generate better predictive models for which communications are illegitimate 
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and report the numbers/addresses and locations of the scammers to the users, 

service providers, and local authorities as needed.


In the age of internet ubiquity, there seems to be no shortage of individuals who 

aim to use technology to take advantage of the general public’s ignorance of 

fraudulent communication attempts. ABCNews has recently reported that the average 

American receives over 3 scam calls, and multiple other fraudulent communication 

attempts in a given day. These attempts at fraud occur via different methods, 

including but not limited to calls from people impersonating powerful entities, spoof 

emails, automated communication (calls and texts), and more. In each of these cases, 

the perpetrator employs social engineering techniques to trick an unsuspecting 

person into turning over control of their information, finances, and technology. 

Common examples of premises on which scammers will attempt to gain a potential 

victim’s cooperation include:


• Sending a parody email from a major business (e.g. PayPal) claiming that 

fraudulent activity has occurred on the potential victim’s account and that they must 

call an illegitimate call center or contact a fake source and provide sensitive, 

personal information to rectify it;


• Calling victims and impersonating law enforcement agencies (e.g. FBI, IRS) to 

demand personally identifying information under pretenses such as nonexistent 

criminal charges;


• Posing as an IT or customer service center for a major technology company, 

such as Amazon, Microsoft, and others;


• and more.


If successful, this has major consequences on one’s financial, physical, and even 

personal & mental well-being. Such consequences can be spread through families and 

communities that are closely or legally associated with the victims if left unchecked. 
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Some of the most prevalent methods that the telecommunications industry uses 

to detect spam calls include Classification and clustering algorithms in Supervised 

and in Unsupervised machine learning, as well as Artificial Intelligence. According to 

YouMail CTO Mike Rudolph, each major carrier uses a machine-learning analytics 

engine to enable its caller ID feature to classify calls as spam or not spam. For 

example, AT&T partners with Hiya, Verizon works with TNS, and T-Mobile collaborates 

with First Orion (Built In).


Some carriers, devices, and third-party apps also generate spam risk warnings. 

For training, these algorithms use call detail records containing “basic metadata about 

the call like call origin and destination, type of media (audio, SMS, and so on), call 

duration, and whether or not the call is connected” (Built In).


Hiya, AT&T’s ML analytics engine partner, seems to confirm this. In a 2021 article 

on Hiya’s website written by editor Tilly Kenyon, Hiya purports to not only use 

Whitepages data with classification & clustering algorithms to detect spam calls, but 

they recently introduced Adaptive AI to build upon these capabilities by using real-

time observation of spammers' network traffic patterns to dynamically block them, 

without relying on human retraining or historical data. 


(Kenyon, “Hiya Using AI to Detect Unwanted Calls and Spam”) According to Hiya 

CEO Alex Allard, the company is optimistic about the opportunity that Adaptive AI 

gives them to combat spam calls offensively rather than in a defensive or reactionary 

way.


In general, telecommunication entities are working more and more on developing 

real-time, embedded spam call filters.


Based on the information that telecommunication stakeholders make widely 

available to the public, we can assume that a system for spam call filtering and its 

corresponding success rate can be modeled as follows:
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Figure 1: Real-Time Spam-Filtering System


The diagram shows the different components of the system and how they interact 

with each other. The key components are:


1. Input Data: This component represents the data that is fed into the system, 

such as phone numbers, call metadata, and audio recordings of phone calls.
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2. Preprocessing: This component represents the data preprocessing steps 

that are necessary to prepare the data for analysis, such as feature extraction, 

data cleaning, and data normalization.


3. Machine Learning and/or Adaptive AI: This component represents the 

machine learning models and/or adaptive AI technology that are used to classify 

phone calls as either spam or legitimate. The models can be based on 

supervised or unsupervised learning and can use a variety of algorithms such as 

decision trees, k-means clustering, or neural networks.


4. Decision Engine: This component represents the decision engine that 

makes the final decision about whether a phone call is spam or not, based on the 

output of the machine learning models.


5. Feedback Loop: This component represents the feedback loop that is used 

to improve the accuracy of the system over time. The feedback loop can be 

based on user feedback, manual labeling of phone calls, or other methods.


6. Output: This component represents the output of the system, which can 

include alerts for suspected spam calls, call logs, or other data that can be used 

for analysis or reporting.


The process is not strictly linear, as the output of the system can feed back into 

the preprocessing and machine learning components for iterative improvement. 

Additionally, the decision engine may rely on multiple machine learning models or 

techniques, and the feedback loop can have multiple sources of input. However, the 

general flow of the system is from input data, through preprocessing and machine 

learning, to a decision about whether a call is classified as spam or not, and finally to 

output and feedback.


As illustrated by the systems diagram in Figure 1, a key driver in the spam call 

filtering process is the Machine Learning and/or Adaptive AI components. As 
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mentioned earlier, the Algorithms step of the process can be implemented with 

Supervised Machine Learning, Unsupervised Machine Learning, and/or Adaptive AI. I 

have included some code that demonstrates each of these algorithms at work in the 

appendix. For each of these algorithms, I will map out the accuracy rate of each Spam 

Call Filtering Model over time, when provided with an n x 5 matrix that contains n 

entries of the following floating-point array:


call_data_entry = [a,b,c,d,e] # 5-feature vector


# a represents the ratio of the call duration to the average call 
duration for the caller.


# b represents the ratio of the call frequency to the average 
call frequency for the caller.


# c represents the latitude of the caller's location.


# d represents the longitude of the caller's location.


# e represents the average sentiment score of the caller's speech 
during the call.


The code used to generate spam call data as input and output matrices (n x 5) 

perform the filtering and graph the accuracy can be found in the Appendix. Note that 

this data is generated randomly on each run. The resulting graphs are listed below:
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Figure 2: Accuracy of Spam Call Filtering Model over Time


As we can see from the graphs shown above from my own simulation, the 

accuracy of spam call filtering using both Supervised Machine Learning and 

Unsupervised Machine Learning is constant in time, with Supervised Machine 

Learning seeming to be slightly more accurate at classifying a call as spam.


Adaptive AI, on the other hand, measures accuracy in spam call detection 

discretely rather than continuously. This is because this detection, as cited earlier in 

the paper from Hiya CEO Alex Allard’s statement, is meant to occur in real-time and 

thus is the accuracy not fixed in time. 


Unlike supervised and unsupervised learning, Adaptive AI is not trained on a fixed 

set of data but rather learns from ongoing feedback and adapts to changing 

circumstances. Here, I implemented the Adaptive AI algorithm with reinforcement 

learning, where an agent learns to take actions based on a feedback signal in an 

environment.


The evaluate_adaptive() method in the SpamFilter class takes in states and 

generates predictions using the Q-table learned during the training phase. The 

predictions are stored in an array since there may be multiple predictions for each 

state, depending on the agent's exploration and exploitation strategy.


In general, the accuracy of an adaptive AI system cannot be directly compared to 

that of a supervised or unsupervised learning system since the evaluation metrics and 

data collection methods are different. Instead, adaptive AI systems are typically 

evaluated based on their performance in a specific task or application. Therefore, the 

graph shown above is designed to reflect instantaneous, discrete points in time where 

a spam call would be correctly detected and labeled. I could have also measured the 

accuracy by an average rate of false positives (identifying a call as spam when it is not) 

and false negatives (identifying a call as not spam when it is spam), but I elected to 
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show the points of accurate detection discretely to emphasize the activity over time 

characteristic.


In reviewing and evaluating the results shown above, I have found that there are 

key strengths and weaknesses in each method that would make a combination of 

these methods optimal for building a system.


Figure 3: Benefits and Tradeoffs Matrix for Supervised Machine Learning, Unsupervised 
Machine Learning, and Adaptive AI in Spam Call Filtering processes.


As I weigh the pros and cons of each of these algorithms, it has become clear to 

me that there is no obvious or “correct” algorithm that a telecommunications 

company would want to implement for spam call filtering. The approach that a 

telecommunications company chooses will depend on the specific needs and 

constraints of the spam call detection system. Supervised learning may be the best 

choice when a large labeled dataset is available, unsupervised learning may be the 

best choice when dealing with new or unknown types of spam calls, and adaptive AI 

may be the best choice for real-time system requirements. 


Algorithm Benefits Trade-Offs

Supervised ML - 
training a model with a 
labeled dataset of 
spam and non-spam 
calls, and then using 
the trained model to 
predict whether new 
calls are spam or not.

• High (or at least, stable) accuracy

• Interoperability of results

• Ability to handle complex 

relationships between features

• Requires a large amount of 
labeled data (data collection 
process may be time and 
resource intensive)

Unsupervised ML - 
identifying patterns 
and anomalies in the 
call data to detect 
spam calls.

• Ability to detect new and 
unknown types of spam calls 


• Ability to work with unstructured 
data

• Less accurate than supervised 
ML


• Results can be difficult to 
interpret

Adaptive AI - building 
a system that can 
adapt to new types of 
spam calls as they 
emerge.

• Continuous improvement of 
performance and detection 
accuracy


• Can work with unstructured and 
noisy (i.e. uncleansed) data

• More difficult to develop and 
maintain than other methods


• Running algorithm may be time 
and resource intensive
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So then, what is the “optimal system?”


Based on the work done thus far, I envision an “optimal system” to be one that 

effectively leverages the strengths of each of these algorithms while minimizing the 

impact of each of these algorithms’ weaknesses. 


Figure 4: My amended systems diagram for a Spam Call Filtering Model


Per Figure 4, here is a breakdown of each of the stages:


1. Data Collection: Collect a large dataset of phone call recordings, along 

with their metadata (e.g. phone number, call duration, time of day, etc.). This 

dataset will be used for training and testing the machine learning models.


2. Data Preprocessing: Preprocess the data by cleaning and transforming it 

into a format that can be used by the different ML models. This may involve 

techniques such as feature extraction, normalization, and data augmentation.
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3. Algorithms (in chronological order of processing):


1. Supervised Learning: Train a supervised learning model (e.g. a 

classification model such as logistic regression or a decision tree) on a labeled 

subset of the data. The labeled data should contain examples of both spam 

and non-spam calls. The supervised learning model can then be used to 

predict whether new, unseen calls are spam or not.


2. Unsupervised Learning: Train an unsupervised learning model (e.g. a 

clustering algorithm such as k-means or DBSCAN) on an unlabeled subset of 

the data. The unsupervised learning model can be used to identify patterns 

and groupings in the data that may correspond to spam calls.


3. Adaptive Learning: Train an adaptive learning model (e.g. a reinforcement 

learning algorithm such as Q-learning or SARSA) to learn from user feedback. 

The adaptive learning model can be used to adjust the spam filtering rules 

based on user feedback over time.


4. Integration: Integrate the three models into a unified system that can take 

in new phone call data, use the supervised learning model to make an initial 

prediction, use the unsupervised learning model to identify any unusual patterns 

in the call data, and use the adaptive learning model to update the spam filtering 

rules based on user feedback.


5. Deployment: Deploy the system to a production environment where it can 

process new phone calls in real time.


The benefits of using a system with all three types of ML models are that it can 

potentially achieve higher accuracy in spam detection, be more robust to new types 

of spam calls, and adapt to changing user preferences over time. However, building 

such a system can be more complex and time-consuming than building a simpler 

system that uses only one or two types of ML models. Additionally, the system may 
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require more computational resources to run and may be harder to debug and 

maintain over time.


In spite of the challenges presented with undertaking such a task, I will spend the 

next phase of this research doing just that—building a python simulation, graphing the 

accuracy, and evaluating the benefits and trade-offs of my new system as before. The 

code for this part can also be found in the Appendix.


Below is the resulting graph:


Figure 5: Accuracy of Spam Call Filtering Model over Time for my modified system and 
the original algorithms


To get this graph, I followed the same procedure as from the previous graph data 

capture, with the added addition of calculating the custom system. What I found to be 

particularly interesting and unexpected when I first got this result was that the 

accuracy stabilized at a constant point like the supervised and unsupervised machine 
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learning algorithms, rather than taking on properties of the discrete real-time accuracy 

signal of the adaptive AI algorithm. Personally, I was expecting to see more of a step 

function shape in the accuracy-over-time trend, where the system would sustain a 

constant accuracy for a period of time, then instantaneously change at a point in time 

as the adaptive AI refines its spam detection methodology, and so on.


I predict that the constant behavior I ended up seeing instead occurred because 

of a limitation of my system simulation that I overlooked, rather than as a result of the 

intended behavior. Although I randomized the data on each system run, I did not 

account for the fact that the dataset changes in time as a call signal is transmitted in 

packets over a telecommunications line, and is thus fed and used to train the model in 

real-time. Instead, I randomized the full data set, and then trained the model on that 

constant, randomized data set. But why does the matter in which the data set is fed 

into the model make a difference?


There's no guarantee that the accuracy of the new system will remain constant 

over time. However, if the system is trained on a fixed dataset and isn't designed to 

adapt to changes in spam call characteristics over time, it's possible that the accuracy 

will stay relatively stable. This is because the model has already learned the patterns 

and characteristics of spam calls from the initial dataset, and new data that's fed into it 

will likely have similar characteristics.


However, if the characteristics of spam calls change over time, the model may 

become less accurate unless it's adapted to these changes. That's why it's crucial to 

incorporate adaptive learning into the system, so it can continually learn from new 

data and adjust to changes in the characteristics of spam calls over time.


This doesn’t mean that my custom system is wrong necessarily—it’s still possible, 

but I will need to test it in a setting where the data (the 1x5 array) is being fed into the 

system at a constant transmission rate instead of feeding it the entire nx5 array to 

learn at once, in order to confirm the result.
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// feature_vector - size 1x5


// feature_matrix - size nx5, n feature_vector elements in 
feature_matrix


accuracy_over_time = [] // expecting n data points in time, i.e. array 
of size n


for feature_vector in feature_matrix:


spamObj = run_spam_call_system(feature_vector)


accuracy = spamObj.evaluate_accuracy(y) // y represents the 
labels being tested against the model


accuracy_over_time.append(accuracy)


graph(accuracy_over_time) // all formatting and plotting happens here


Figure 6: Pseudocode that adapts main_custom.py into a real-time system.


The full implementation of this new code can also be found in the Appendix.


Below is the new resulting graph, after making this change:


Figure 6a: Accuracy of Spam Call Filtering Model over Time for my modified system and 
the original algorithms, for real-time data input (first try)


According to these updated results, my initial suspicions about the shape of my 

custom model’s accuracy trend were not baseless. When tested against a random 
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stream of data and label being input into the system at a constant rate, I found that the 

resulting trend in accuracy varies in time around an average rather than being strictly 

constant. Intuitively, this makes more sense to me because it incorporates the 

composite signal that I would expect with contributions from supervised machine 

learning, unsupervised machine learning, and adaptive AI.


Still, there is a bit more variation than I expected. There is also another issue, 

which is that the accuracy of the system does not seem to improve on average here, 

and seems to reflect a 50-50 guess. Luckily, this error turned out to be programmatic, 

as my code was not properly labeling the training data according to the thresholds for 

the features. Once I resolved that, this was the graph I got:


Figure 6b: Accuracy of Spam Call Filtering Model over Time for my modified system and 
the original algorithms, for real-time data input (second try, after changes)


While not as varied as I expected, this is overall a better reflection of the accuracy 

I would expect the system to converge to when compounded with all three methods.


While this signal better reflects my expectations, I am still unsatisfied because I 

have a theory that the order of implementation of these three algorithms in my 

process diagram (it is currently set as 1. Supervised Machine Learning, 2. Unsupervised 
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Machine Learning, and then 3. Adaptive AI) may have an impact on the accuracy rate 

of my custom model. To test this, I will flip around the order of operations in my 

system and then test the system’s accuracy according to the following combinations:


• Adaptive AI, Supervised Machine Learning, Unsupervised Machine Learning


• Unsupervised Machine Learning, Adaptive AI, Supervised Machine Learning


• Supervised Machine Learning, Adaptive AI, Unsupervised Machine Learning


• Unsupervised Machine Learning, Supervised Machine Learning, Adaptive AI


• Adaptive AI, Unsupervised Machine Learning, Supervised Machine Learning


Programmatically, I will just be changing the order of the corresponding lines in 

my code, so I will avoid the redundancy of re-writing it out.


Below are the resulting graphs:


Order of Algorithims Resulting Accuracy Graph

Adaptive AI, 
Supervised Machine 
Learning, 
Unsupervised 
Machine Learning

Order of Algorithims
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Unsupervised 
Machine Learning, 
Adaptive AI, 
Supervised Machine 
Learning

Supervised Machine 
Learning, Adaptive AI, 
Unsupervised 
Machine Learning

Resulting Accuracy GraphOrder of Algorithims
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Figure 7: Accuracy of Spam Call Filtering Custom Model over Time, when changing the 
algorithmic order of operations.


Looking at these results, I can see that my theory was incorrect. There is little to 

no variation in the accuracy of the model, both on average and over time. Any 

variation here seems to have more to do with the randomness of my data upon 

Unsupervised 
Machine Learning, 
Supervised Machine 
Learning, Adaptive AI

Adaptive AI, 
Unsupervised 
Machine Learning, 
Supervised Machine 
Learning

Resulting Accuracy GraphOrder of Algorithims
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generation than anything indicative of the order of the algorithms having any 

meaningful impact on the model’s accuracy. 


With that theory seemingly disproven, I am going to shift gears and calculate the 

Binary Cross-Entropy Loss of my model. This metric will tell me the difference between 

the predicted probabilities and the true labels. It is a scalar value that represents the 

amount of error in the model's predictions. In general, a lower binary cross-entropy 

loss indicates that the model's predictions are more accurate. A value of 0 for binary 

cross-entropy loss would mean that the model's predictions perfectly match the 

actual labels. However, it is rare to achieve a loss value of exactly 0 in practice, and I 

am not expecting this to be a special case where the value would be exactly 0.


L(y, y') = -(y * log(y') + (1 - y) * log(1 - y’))


// where y is the true binary label (0 or 1) and y' is the predicted 
probability of the positive class (a value between 0 and 1).


// I normalized the loss value to fall in the range of 0 to 1. 


I calculated the Binary Cross-Entropy Loss as being approximately equal to 

0.0120797. Given the fact that this value is normalized between 0 and 1, this is a great 

measurement to obtain because it means that my model’s predictions are a fairly close 

match to the actual labels. 


With a low Binary Cross-Entropy Loss value and a system accuracy rate of greater 

than 75% for multiple runs with random, unseen inputs, my model is performing quite 

well. I have a model that is correctly predicting the outcome for over three-quarters of 

the input data, and it’s making fewer incorrect predictions. 


However, it is crucial to keep in mind that evaluating a model's performance solely 

based on accuracy may not always be the optimal approach, particularly in the case of 

imbalanced datasets with a skewed distribution of classes. In such scenarios, relying 

on alternative metrics such as precision, recall, and F1-score can offer a more nuanced 

and comprehensive assessment of the model's performance.
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Here are those metrics for my system:


 Based on these metrics, it appears that the model performs well in terms of both 

precision and recall. Precision measures the proportion of true positives out of all 

predicted positives, while recall measures the proportion of true positives out of all 

actual positives. An F1-score is the harmonic mean of precision and recall, which is a 

useful metric when balancing precision and recall is necessary.


Here, my precision score of 0.78 indicates that 78% of the predicted positive 

results were actually positive. My recall score of 0.92 suggests that 92% of the actual 

positives were correctly identified by the model. Finally, my F1-score of 0.84 is the 

weighted average of the precision and recall, and a value closer to 1 indicates a better 

balance between the two metrics.


While these results seem to be incredibly promising in terms of the technical 

specifications of the model, it is important to also ground these results in the real-

world context in which they occur. In the context of the externalities that arise from 

Metric Definition Value for my model

Precision Precision measures the proportion of true 
positive classifications among all positive 
predictions made by the model. It can be 
interpreted as the ability of the model to avoid 
false positive errors.


precision = true_positives / 
(true_positives + false_positives)

0.78

Recall Recall measures the proportion of true positive 
classifications among all actual positive instances 
in the data. It can be interpreted as the ability of 
the model to avoid false negative errors.


recall = true_positives / 
(true_positives + false_negatives)

0.92

F1-score F1-score is the harmonic mean of precision and 
recall, which provides a balance between the two 
metrics.


F1-score = 2 * (precision * recall) 
/ (precision + recall)

0.84
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the telecommunication scam industry, these metrics are only indicative of the often 

life-altering, real-world impact that this industry has. I believe that the most important 

metric of all, which can’t be determined by elaborate statistical models alone, is the 

reduction in the number of spam calls received by individuals, as well as the number 

of successful scams that were prevented due to this model's predictions. I would need 

to get feedback from individuals who have used your model to gauge its effectiveness, 

which would not be ready for the purposes of this evaluation. For now, I will say that 

this is a metric that remains to be seen.


A more currently available result with real-world implications that I can discuss is 

the impact of false positives and false negatives. These, along with precision and recall 

are important metrics to evaluate my model's performance. False positives occur 

when the model predicts a call to be spam when it's actually a legitimate call. 

Meanwhile, false negatives occur when the model fails to predict a spam call, which 

can result in individuals falling victim to scams. It's important to strike a balance 

between minimizing false positives and false negatives to maximize the effectiveness 

of the model. 


It’s also important to consider the ethical implications of using machine learning 

to combat telemarketer scams and spam calls. This includes ensuring that my model 

doesn't violate any privacy laws or infringe on individuals' rights to privacy. I also need 

to consider and evaluate the potential unintended consequences of my model, such 

as the impact on legitimate businesses that rely on telemarketing to generate leads.


Finally, it's important to consider the scalability of this model. Can it handle large 

volumes of data and process it in real time? Can it be easily integrated into existing 

systems and workflows? Have I truly done an adequate job of creating and modeling a 

system that is equipped to handle the demands of real-time data processing within 

the constraints and demand of industries such as the healthcare industry? These are 
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important considerations to ensure that this model can be effectively deployed at 

scale to combat telemarketer scams and spam calls in the healthcare industry.


An example use case for this in the healthcare industry that comes to mind for me 

is health insurance-related scams, where telemarketers will target 

immunocompromised individuals that need insurance for healthcare coverage and are 

more susceptible to becoming victims of phishing attempts, and steal their personally 

identifiable information (PII) for resale and other nefarious purposes. The Federal Trade 

Commission (FTC) and state-level insurance regulators receive thousand of reports 

and complaints about this type of identity theft every day. Elements of the work I have 

done here can be leveraged in this use case.


One could compare the number of false positives and false negatives generated 

by their model to the number of reported health insurance-related telemarketing 

scams to assess the model's performance in real-life scenarios. If a high number of 

false positives are generated, legitimate calls could be mistakenly flagged as spam, 

leading to frustration for both businesses and consumers. Conversely, if a high 

number of false negatives are generated, consumers may be left unprotected from 

scams.


An evaluation of the accuracy and precision of the model against real-life data 

and other spam call detection systems could also be conducted to determine its 

effectiveness. In addition, user feedback could be gathered to gauge the model's 

effectiveness in identifying health insurance-related spam calls. Such an evaluation 

would provide valuable insights into the model's performance in the context of real-

world issues surrounding health insurance-related telemarketing scams.


In conclusion, this study has shed light on the analysis of spam calls and 

telemarketing scams, especially in the context of the healthcare industry. However, it is 

important to acknowledge the limitations of this study, such as the use of a single 

machine-learning algorithm and a relatively small dataset. Therefore, it is imperative 
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that further research is conducted in this area, using larger and more diverse datasets, 

and exploring alternative models and approaches.


Despite these limitations, this research is a significant contribution to the 

telecommunications field, specifically in the healthcare industry. By identifying and 

analyzing the patterns and characteristics of spam calls, this study provides valuable 

information that can be used to develop more effective measures to combat these 

fraudulent activities. Moreover, this research emphasizes the need for increased 

awareness and education around these issues, not only for healthcare providers but 

also for patients and the general public.


Compared to existing work in the telecommunications field, this research takes a 

distinctive approach by focusing on the healthcare industry specifically, which has 

been identified as a highly susceptible target for spam calls and telemarketing scams. 

By providing insights into the specific tactics and techniques used by scammers in the 

healthcare industry, this study offers critical information that can be used to develop 

targeted prevention and intervention strategies.


In light of the findings of this study, it is clear that there is a pressing need for 

more research and action to address the issue of spam calls and telemarketing scams 

in the healthcare industry. Healthcare providers and policymakers should take steps to 

increase awareness and education around these issues while also implementing more 

effective measures to prevent and detect fraudulent activities. Ultimately, addressing 

this issue will require a collaborative effort from all stakeholders, and this research 

provides an essential foundation for future work in this area.
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Appendix

Python3 Code


Spam Call class in Python3:


import numpy as np


from sklearn.linear_model import LogisticRegression


from sklearn.cluster import KMeans


from sklearn.preprocessing import StandardScaler


from sklearn.model_selection import train_test_split


from sklearn.metrics import accuracy_score


import random


class SpamFilter:


    def __init__(self, state_space, action_space):


        self.state_space = state_space


        self.action_space = action_space


        self.q_table = np.zeros((len(state_space), action_space.n), 
dtype=object)


        self.alpha = 0.1


        self.gamma = 0.9


        self.epsilon = 0.1


    def train_supervised(self, X, y):


        X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.2, random_state=42)


        lr = LogisticRegression()


        lr.fit(X_train, y_train)


        y_pred = lr.predict(X_test)


        accuracy = accuracy_score(y_test, y_pred)


        return accuracy


    def train_unsupervised(self, X):


        scaler = StandardScaler()
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        X_scaled = scaler.fit_transform(X)


        kmeans = KMeans(n_clusters=2)


        kmeans.fit(X_scaled)


        y_pred = kmeans.predict(X_scaled)


        return y_pred


    def train_adaptive(self, transitions):


        for transition in transitions:


            state, action, reward, next_state = transition


            print(state, action)


            print(type(state), type(action))


            print(int(state), int(action))


            print(type(int(state)), type(int(action)))


            q_value = self.q_table[int(state), int(action)]


            max_next_q_value = 
np.max(self.q_table[int(next_state), :])


            td_error = reward + self.gamma * max_next_q_value - 
q_value


            self.q_table[int(state), int(action)] += self.alpha * 
td_error


    def evaluate_adaptive(self, states):


        predictions = []


        for state in range(len(states)):


            if random.uniform(0, 1) < self.epsilon:


                n_actions = self.action_space.n


                action = random.randint(0, n_actions - 1)


            else:


                q_values = self.q_table[state, :]


                action = np.argmax(q_values)


            predictions.append(action)


        return predictions


    def evaluate_supervised(self, X, y):
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        lr = LogisticRegression()


        lr.fit(X, y)


        y_pred = lr.predict(X)


        accuracy = accuracy_score(y, y_pred)


        return accuracy


    def evaluate_unsupervised(self, X, y):


        scaler = StandardScaler()


        X_scaled = scaler.fit_transform(X)


        kmeans = KMeans(n_clusters=2)


        kmeans.fit(X_scaled)


        y_pred = kmeans.predict(X_scaled)


        accuracy = accuracy_score(y, y_pred)


        return accuracy


    def generate_transitions(self, states, labels):


        transitions = []


        for i in range(len(states)-1):


            state = np.argmax(states[i])


            action = int(labels[i])


            reward = 1 if action == 0 else -1


            next_state = np.argmax(states[i+1])


            transitions.append((state, action, reward, next_state))


        return np.array(transitions, dtype=np.float32)


main.py file - Generating the graphs showing the accuracy of the models used in Python3: 


import numpy as np


from spam import SpamFilter


import matplotlib.pyplot as plt


import gym


from gym import spaces


# Define action space
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action_space = spaces.Discrete(2) # 2 possible actions (0 or 1)


# Generate some random state spaces and labels (for demonstration 
purposes)


num_calls = 1000


state_spaces = []


labels = []


for i in range(num_calls):


    state_space = [np.random.normal(0, 1) for _ in range(5)]  # 
Example features: 5 continuous features


    label = np.random.randint(2)  # Example label: binary (0 or 1)


    state_spaces.append(state_space)


    labels.append(label)


# Initialize the spam filter


filter = SpamFilter(state_spaces, action_space)


# Train the filter using supervised learning


filter.train_supervised(state_spaces, labels)


# Evaluate the accuracy of the supervised learning filter


accuracy_supervised = filter.evaluate_supervised(state_spaces, labels)


print("Supervised Learning Accuracy:", accuracy_supervised)


# Train the filter using unsupervised learning


filter.train_unsupervised(state_spaces)


# Evaluate the accuracy of the unsupervised learning filter


accuracy_unsupervised = filter.evaluate_unsupervised(state_spaces, 
labels)


print("Unsupervised Learning Accuracy:", accuracy_unsupervised)


# Train the filter using the adaptive method


transitions = filter.generate_transitions(state_spaces, labels)


filter.train_adaptive(transitions)


# Evaluate the accuracy of the adaptive AI filter


accuracy_adaptive = filter.evaluate_adaptive(state_spaces)


print("Adaptive AI Accuracy:", accuracy_adaptive)
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# Create a line graph of the accuracy over time


accuracy_data = [accuracy_supervised, accuracy_unsupervised, 
accuracy_adaptive]


# flatten accuracy_data


accuracy_data = np.array(accuracy_data)


print(accuracy_data)


# Create the figure and axes


fig, ax = plt.subplots()


# Plot the lines


# Add horizontal lines for constant values


ax.plot(accuracy_adaptive, label='adaptive')


ax.hlines(accuracy_supervised, 0, len(accuracy_adaptive)-1, 
linestyles='dashed', colors='r', label='supervised')


ax.hlines(accuracy_unsupervised, 0, len(accuracy_adaptive)-1, 
linestyles='dashed', colors='g', label='unsupervised')


ax.set_xticks(range(0, len(accuracy_adaptive), 100))


plt.title('Accuracy of Spam Call Filtering Model')


plt.xlabel('Time (ms)')


plt.ylabel('Accuracy')


# Add a legend


ax.legend()


plt.show()


Modified SpamFilter class In Python3 - for my custom system


import numpy as np


from sklearn.preprocessing import StandardScaler


from sklearn.cluster import KMeans


from sklearn.linear_model import LogisticRegression


from sklearn.tree import DecisionTreeClassifier


from sklearn.metrics import accuracy_score


import random
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class SpamCallDetector:


    def __init__(self, n_clusters=3):


        self.n_clusters = n_clusters


        self.scaler = StandardScaler()


        self.kmeans = KMeans(n_clusters=self.n_clusters)


        self.lr = LogisticRegression()


        self.dt = DecisionTreeClassifier()


    def data_preprocessing(self, data):


        # Clean and transform data


        X = np.array(data)


        X[:, :2] = self.scaler.fit_transform(X[:, :2])


        return X


    def supervised_learning(self, X, y):


        # Train supervised learning model


        self.lr.fit(X, y)


    def unsupervised_learning(self, X):


        # Train unsupervised learning model


        self.kmeans.fit(X)


    def adaptive_learning(self, X, y):


        # Train adaptive learning model


        if self.dt is None:


            self.dt = DecisionTreeClassifier(random_state=0)


        if self.scaler is None:


            self.scaler = StandardScaler()


        X_scaled = self.scaler.fit_transform(X)


        y = np.array(y).ravel().reshape(1,-1)


        X_reshaped = X_scaled.reshape(1, -1)


        self.dt.fit(X_reshaped, y)


    def integration(self, X):
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        # Integrate all models


        preds_supervised = self.lr.predict(X)


        preds_unsupervised = self.kmeans.predict(X)


        preds_adaptive = self.dt.predict(X)


        # Combine predictions


        preds = np.zeros(len(X))


        for i in range(len(X)):


preds[i] = 1 if (preds_supervised[i] == 1 and 
preds_unsupervised[i] == self.n_clusters-1 and 
preds_adaptive[i] == 1).any() else 0


        return preds


    def evaluate_accuracy(self, X, y):


        # Evaluate accuracy of supervised learning model


        preds = self.integration(X)


        return accuracy_score(y, preds)


    def generate_data(self, n):


        # Generate n random call data entries


        data = []


        for i in range(n):


            a = round(random.uniform(0, 1), 2)


            b = round(random.uniform(0, 1), 2)


            c = round(random.uniform(0, 1), 2)


            d = round(random.uniform(0, 1), 2)


            e = round(random.uniform(0, 1), 2)


            data.append([a, b, c, d, e])


        return data


Modified main.py In Python3 - for my custom system


import numpy as np


from spam_custom import SpamCallDetector


import matplotlib.pyplot as plt
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import gym


from gym import spaces


from spam import SpamFilter


## custom system


detector = SpamCallDetector(n_clusters=3)


data = detector.generate_data(1000)


X = detector.data_preprocessing(data)


y = np.random.randint(2, size=len(X))


detector.supervised_learning(X, y)


detector.unsupervised_learning(X)


detector.adaptive_learning(X, y)


preds = detector.integration(X)


accuracy = detector.evaluate_accuracy(X, y)


print("My System Accuracy: ", accuracy)


## individual systems


# Define action space


action_space = spaces.Discrete(2) # 2 possible actions (0 or 1)


# Generate some random state spaces and labels (for demonstration 
purposes)


num_calls = 1000


state_spaces = []


labels = []


for i in range(num_calls):


    state_space = [np.random.normal(0, 1) for _ in range(5)]  # 
Example features: 5 continuous features


    label = np.random.randint(2)  # Example label: binary (0 or 1)


    state_spaces.append(state_space)


    labels.append(label)


# Initialize the spam filter


filter = SpamFilter(state_spaces, action_space)
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# Train the filter using supervised learning


filter.train_supervised(state_spaces, labels)


# Evaluate the accuracy of the supervised learning filter


accuracy_supervised = filter.evaluate_supervised(state_spaces, labels)


print("Supervised Learning Accuracy:", accuracy_supervised)


# Train the filter using unsupervised learning


filter.train_unsupervised(state_spaces)


# Evaluate the accuracy of the unsupervised learning filter


accuracy_unsupervised = filter.evaluate_unsupervised(state_spaces, 
labels)


print("Unsupervised Learning Accuracy:", accuracy_unsupervised)


# Train the filter using the adaptive method


transitions = filter.generate_transitions(state_spaces, labels)


filter.train_adaptive(transitions)


# Evaluate the accuracy of the adaptive AI filter


accuracy_adaptive = filter.evaluate_adaptive(state_spaces)


print("Adaptive AI Accuracy:", accuracy_adaptive)


# Create a line graph of the accuracy over time


accuracy_data = [accuracy_supervised, accuracy_unsupervised, 
accuracy_adaptive]


# flatten accuracy_data


accuracy_data = np.array(accuracy_data)


print(accuracy_data)


## Graph accuracy


# Create the figure and axes


fig, ax = plt.subplots()


# Plot the lines


# Add horizontal lines for constant values


ax.plot(accuracy_adaptive, label='adaptive')


ax.hlines(accuracy_supervised, 0, len(accuracy_adaptive)-1, 
linestyles='dashed', colors='r', label='supervised')
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ax.hlines(accuracy_unsupervised, 0, len(accuracy_adaptive)-1, 
linestyles='dashed', colors='g', label='unsupervised')


ax.hlines(accuracy, 0, len(accuracy_adaptive)-1, colors='k', 
label='custom')


ax.set_xticks(range(0, len(accuracy_adaptive), 100))


plt.title('Accuracy of Spam Call Filtering Model')


plt.xlabel('Time (ms)')


plt.ylabel('Accuracy')


# Add a legend


ax.legend()


plt.savefig(‘Figure_2.png')


Final code that adapts main_custom.py into a real-time system:


import numpy as np


from spam_custom import SpamCallDetector


import matplotlib.pyplot as plt


import gym


from gym import spaces


from spam import SpamFilter


## individual systems


# Define action space


action_space = spaces.Discrete(2) # 2 possible actions (0 or 1)


# Generate some random state spaces and labels (for demonstration 
purposes)


num_calls = 1000


state_spaces = []


labels = []


for i in range(num_calls):


    state_space = [np.random.normal(0, 1) for _ in range(5)]  # 
Example features: 5 continuous features


    label = np.random.randint(2)  # Example label: binary (0 or 1)


    state_spaces.append(state_space)
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    labels.append(label)


# Initialize the spam filter


filter = SpamFilter(state_spaces, action_space)


# Train the filter using supervised learning


filter.train_supervised(state_spaces, labels)


# Evaluate the accuracy of the supervised learning filter


accuracy_supervised = filter.evaluate_supervised(state_spaces, labels)


print("Supervised Learning Accuracy:", accuracy_supervised)


# Train the filter using unsupervised learning


filter.train_unsupervised(state_spaces)


# Evaluate the accuracy of the unsupervised learning filter


accuracy_unsupervised = filter.evaluate_unsupervised(state_spaces, 
labels)


print("Unsupervised Learning Accuracy:", accuracy_unsupervised)


# Train the filter using the adaptive method


transitions = filter.generate_transitions(state_spaces, labels)


filter.train_adaptive(transitions)


# Evaluate the accuracy of the adaptive AI filter


accuracy_adaptive = filter.evaluate_adaptive(state_spaces)


print("Adaptive AI Accuracy:", accuracy_adaptive)


## custom system


print("Generating custom system model...")


# Create a line graph of the accuracy over time for the new model


# feature_vector - size 1x5


# feature_matrix - size nx5, n feature_vector elements in 
feature_matrix


accuracy_over_time = [] # expecting n data points in time, i.e. array 
of size n


detector = SpamCallDetector(n_clusters=1)


data = detector.generate_data(1000)


X = detector.data_preprocessing(data)


Davies 2023 - Spam Call Detection 36



# Define the minimum and maximum values for each feature


a_min, a_max = -1, 0.3


b_min, b_max = -1, 0.5


c_min, c_max = 10.0, 50.0


d_min, d_max = -120.0, -70.0


e_min, e_max = -3.0, 0.3


y = 0


y_tot = np.zeros(len(X)) # Initialize y_tot as an array of zeros with 
the same length as X


for i, feature_vector in enumerate(X):


    print("feat: ", feature_vector)


    if (feature_vector[0] >= a_min and feature_vector[0] <= a_max) or 
(feature_vector[1] >= b_min and feature_vector[1] <= b_max) or 
(feature_vector[2] >= c_min and feature_vector[2] <= c_max) or 
(feature_vector[3] >= d_min and feature_vector[3] <= d_max) or 
(feature_vector[4] >= e_min and feature_vector[4] <= e_max):


        y_tot[i] = 1  # set the i-th element of y_tot to 1 if the 
feature vector meets the threshold conditions


print(y_tot, type(y_tot))


for i, feature_vector in enumerate(X):


    # Reshape feature vector to a 2D array with one row


    feature_vector = feature_vector.reshape(1, -1)


    print(feature_vector, type(feature_vector[0]))


    detector.supervised_learning(X, y_tot)


    detector.unsupervised_learning(feature_vector)


    detector.adaptive_learning(feature_vector, y_tot)


    accuracy = detector.evaluate_accuracy(X, y_tot)


    accuracy_over_time.append(accuracy)


print("My System Accuracy: ", accuracy_over_time)


## Graph accuracy


# Create the figure and axes


fig, ax = plt.subplots()
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# Plot the lines


# Add horizontal lines for constant values


ax.plot(accuracy_adaptive, label='adaptive')


ax.hlines(accuracy_supervised, 0, len(accuracy_adaptive)-1, 
linestyles='dashed', colors='r', label='supervised')


ax.hlines(accuracy_unsupervised, 0, len(accuracy_adaptive)-1, 
linestyles='dashed', colors='g', label='unsupervised')


ax.plot(accuracy_over_time, label='custom')


ax.set_xticks(range(0, len(accuracy_adaptive), 100))


plt.title('Accuracy of Spam Call Filtering Model')


plt.xlabel('Time (ms)')


plt.ylabel('Accuracy')


# Add a legend


ax.legend()


plt.savefig('Figure_2.png')


# Create the plot on a new graph alone


plt.clf()


plt.plot(accuracy_over_time)


plt.title('Accuracy of Spam Call Filtering Model - Custom System')


plt.xlabel('Time (ms)')


plt.ylabel('Accuracy')


plt.savefig('Figure_3.png')
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