
Python Code Documentation for the Project
This project was developed in the Python Language, using the Python Image Library (PIL) for
photo modification and the AppJar Graphical User Interface (GUI) module to host all of the
methods involved in making this application.

This product was originally developed as a command line application, which would be easier for
programmers, but then I decided that a Graphical User Interface would ultimately be more user
friendly for my client, who is a non-programmer, and other potential, non programmer clients.

Assisting Libraries

● Image module from Python Image Library (PIL, Pillow): This module provides a number

of factory functions, including functions to load images from files, to modify, to create
and to display new images. Once a user chooses a file to apply color changes to, using
the gui module from the appJar Library, that chosen file is passed to the applyColor()
function of this project, and edited by the Image module’s various functions.

● Color Module from colour: It converts and manipulates the representation of common
colors. It can also can pick colors for the user to identify objects of the application. It is
mainly used in this project to identify colors by format and return a hexadecimal string
representation of a color. It’s an effective fail safe for utilizing colors in various methods
without running into exceptions.

● gui module from appJar: The gui module from the appJar library allows programmers to
construct and design GUI applications without dealing with too much boilerplate code,
which is code that requires hundreds of thousands of lines to do mundane, minimalistic
tasks.

Graphical User Interface (GUI) Layout

 This splash screen allows the program time to compile, and indicates to the user which
software and what version they are launching.

 This toolbar contains all of the buttons for the essential features of the application, such
as adding colors and applying them to a photo. These buttons can be used to change settings
or the functionality in a GUI. Toolbars appear across the top of a GUI.

Entire application window, complete with the toolbar, the log of colors, the button to save color

schemes (bottom right) and the “About” button for the application (bottom left).

Techniques to Select and Format Colors

 This function serves as a translator for the colors, from the user’s input to a format that
the picture can work with. It takes a list of the user’s selected colors from any of the lists in the
app (which by default is set to the general “Colors” list) and converts it to RGB format so that it
may be applied to the pixels of a photo later on. The function returns a list of the inputted colors
in their RGB format. First, the rgb property converts a color from hexadecimal form to a tuple of
its percentage in float form (a decimal number between 0 to 1) of red, green and blue light.
Because the percentage itself cannot be applied to the picture, each percentage is multiplied by
255 to get the true red, green and blue light values as a float. But because an image can only
contain pixels with integers as the R, G and B values, that “true” value is converted to integer
form with the int(number) function. This new tuple is then stored in a new scheme (new_sch) or
list of colors, and that new list is returned by the function.

Techniques to Categorize and Apply Colors

● Function applyColor(im, scheme)

○ im: The directory address of an image, instance of the Image module from the
PIL.

○ scheme: A list of colors that will be applied to the photo.
This function categorizes the image pixels by its total color intensity, which is the sum of

the R, G and B values of the RGB pixel. With a range of 0 to 765, this measurement determines
the total amount of color light value in a pixel. An intensity of 0 indicates that there is no red,
green or blue light (i.e. no visible light) in the pixel. This pixel is classified as black. On the other
side of the spectrum, an intensity of 765 indicates that there is the highest possible degree of
visible light in the pixel. This pixel is classified as white. This function takes an image path (im)
and a list of colors (scheme) as parameters. First, the pixels of the original picture are converted
into an iterable list. Then, as the function parses through the list, each pixel in the image is
separated into one of four color intensity-based categories. Then, based on that category and
the user’s selection of colors to apply, that pixel from the picture is replaced by a new tuple of R,
G, B values, (i.e. a new color) from the scheme. The first color of the scheme is always the
corresponding color for dark/black pixels, and the fourth color is the the corresponding color for
light/white pixels. After the color changes are applied, the list of pixels is put into a new image
using the .putdata(list_of_pixels) function of Image and displayed on the user’s computer
system’s default viewer using the .show() function of Image.

The figure above is a screencap of the “color palette” section of the application. From

this list of colors, a new picture with these colors is generated. The user can also save their
color scheme into a log, which can be accessed at any time.

Techniques to Store, Load and Remove Colors

The user selects colors to add to their list and potentially apply to their new photo.

Screenshot of the project code taken by the candidate. Rather than directly being added to the
final list of selected colors for the picture, colors are, by default, added to a more general list of
colors, called “All Colors”, so that the user may filter through the unwanted colors and carefully
select the colors that they want.

Once the user has chosen a set of colors that they would like to have readily available at

all times, they can save it for later use by pressing the “Save Colors in Palette” button, located
under the list of the palette’s colors. Provided that the color palette has more than one color in it,
this function saves the hex values of the colors by writing them to the file “colorHistory.txt”.
When the user wants to re import the saved colors, the “Load Previously Used Colors” button on
the toolbox reads all of the saved colors from the “colorHistory.txt” file and reloads them into the
“All Colors” section of the application.

 If the user does add one or more color to their scheme and then decides to change or
remove that color, they have two options: remove or replace. These options result in actions
that have different consequences, and it is up to the user to decide which feature is most
appropriate for their individual situation.

● ‘Remove’ can remove colors in the app in three scales. The program can either
remove some specifically highlighted colors, erase all the colors from the scheme
and not the program, or erase all logged colors. Note that a color can still be re
accessed through the “Load Previously Used Colors” button and its associated
function.

● ‘Replace’ will swap one or more color(s) for another one, which the user will be
prompted to choose a color for.

Results (Generated Pictures)

Before:

After:

 This is an example of the end product of the user applying a color scheme to the photo.
This example shows how the color intensity helped the application categorize each pixel, and
will as identify areas of highlights and depth in the photo. The new colors have a rugged look
that makes the picture look more like a painting.

