# How effective are non-Linear Regression Models at Predicting Housing Prices?

**Ziyad Amer, Chelle Davies** 

### The Importance of Housing Price Predictions



#### **Economic Indicator**

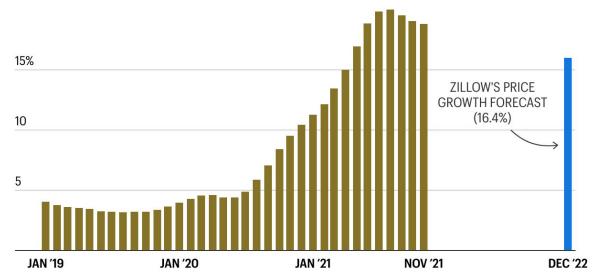
Housing prices signal economic health and wealth



#### **Complex Influences**

Driven by property attributes, location, and economy






**Affordability** Rising Prices highlight equity and planning challenges

## **Issue with Existing Models**

#### **U.S.** home price growth

Year-over-year change in the S&P CoreLogic Case-Shiller Home Price Index



THE MOST RECENT READING (NOV. 2021) CAME IN AT A RECORD 18.8%. GOLD REPRESENTS ACTUAL GROWTH. BLUE REPRESENTS ZILLOW'S 12-MONTH HOME PRICE FORECAST.

CHART: LANCE LAMBERT • SOURCE: S&P DOW JONES INDICES LLC



## Approach and Results

### ~

#### **Non-Linear Regression Models**

Utilizes non-linear methods to predict housing trends, moving beyond traditional linear assumptions



#### **Balances Historical Weighting**

Ensures historical data does not dominate, providing a more adaptive forecasting model



#### **Demographic/Block Features**

Analyzes demographic and neighborhood trends at the granular block level for deeper insights



MAE: \$26,856 R-squared: 0.81

## Data Source: U.S. Census Housing Data, California

- Target: Median house value
- **Socioeconomic:** Median income, median housing age, block group demographics
- **Structural:** Number of rooms, number of bedrooms
- **Geographic:** Longitude and latitude, proximity to ocean

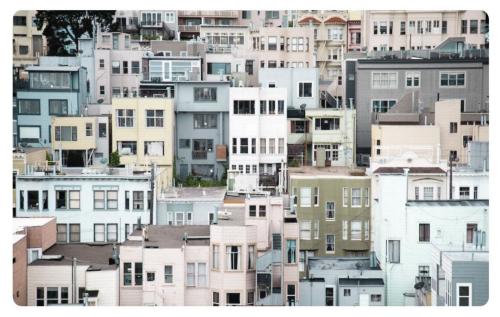
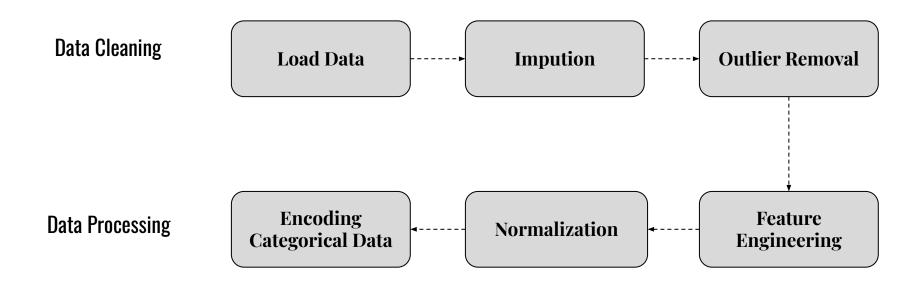
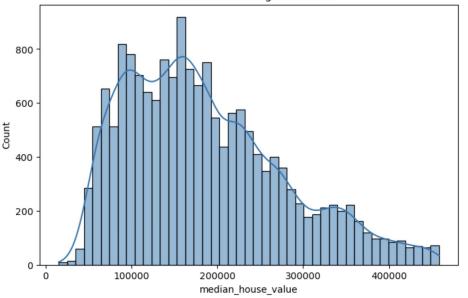
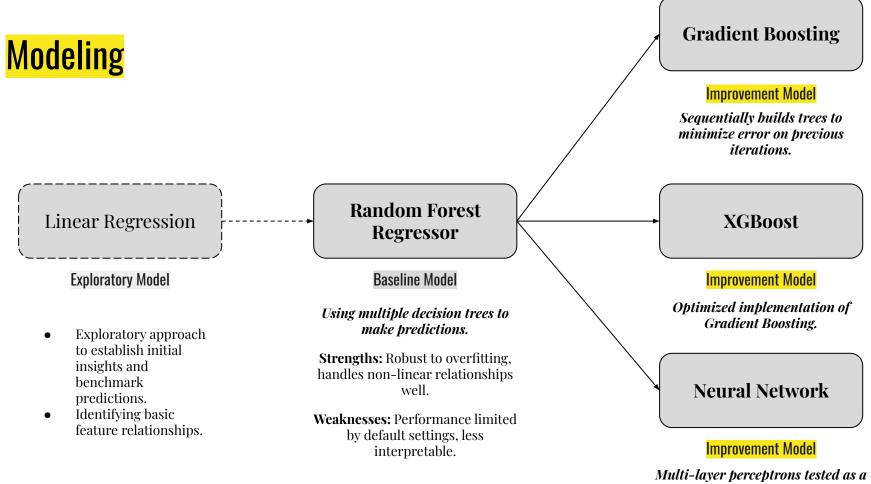




Photo by Sam Ellis on Unsplash






## **Relevant Statistics**


## **Feature Skewness:** Most variables are right-skewed, reflecting higher means than medians.

### **Correlation with Target:**

- Median income shows highest correlation with house value (0.68)
- Ocean proximity plays a significant role in pricing patterns (0.51)



Distribution of Target Variable



more flexible approach.

### **Experiments**

Fitting 3 folds for each of 10 candidates, totalling 30 fits

RandomizedSearchCV\*(cv=3, estimator=RandomForestRegressor( random\_state=42),

param\_distributions={'max\_depth'
: [10, 20, None],

'min\_samples\_leaf': [1, 2, 4],

'min\_samples\_split': [2, 5, 10],

'n\_estimators': [50, 100, 200, 300]},

random\_state=42, scoring='neg\_mean\_squared\_error'
, verbose=1)

\*We got comparable results with GridSearch.

| n<br>estimators | max<br>depth | min samples<br>split | min samples<br>leaf | mean test<br>score (10^9) | STD test<br>score (10^8) |
|-----------------|--------------|----------------------|---------------------|---------------------------|--------------------------|
| 100             | None         | 5                    | 1                   | 2.005070                  | 1.358761                 |
| 300             | None         | 10                   | 2                   | 2.013681                  | 1.342007                 |
| 300             | None         | 10                   | 1                   | 2.018342                  | 1.353665                 |
| 300             | 20           | 5                    | 4                   | 2.020988                  | 1.356353                 |
| 200             | 20           | 2                    | 4                   | 2.025034                  | 1.323973                 |
| 100             | 20           | 10                   | 1                   | 2.027694                  | 1.357980                 |
| 200             | 10           | 5                    | 4                   | 2.244064                  | 1.222815                 |
| 300             | 10           | 10                   | 1                   | 2.265825                  | 1.191305                 |
| 200             | 10           | 10                   | 1                   | 2.269705                  | 1.168511                 |
| 50              | 10           | 5                    | 1                   | 2.271323                  | 1.145363                 |

### **Conclusions**

#### Key Learnings:

- **XGBoost** delivers the strongest predictive capability.
- Variables like **population**, **households**, and **median income** are effective in predicting housing prices but lack completeness.

#### Future Work:

- Enhance Feature Set
- Model Exploration
- Data Enrichment (temporal trends, spatial analyses)

| Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MSE (10^9)                     | MAE       | R^2 Score |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------|-----------|--|--|--|
| Random Forest Regressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.018                          | 30,977.54 | 0.7563    |  |  |  |
| Gradient Boosting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.15                           | 32,898    | 0.741     |  |  |  |
| XGBoost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.60                           | 26,865    | 0.806     |  |  |  |
| Neutral Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.85                           | 38,779    | 0.656     |  |  |  |
| Feature Importance - XGBoost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |           |           |  |  |  |
| ocean_proximity_INLAND -<br>median_income -<br>ocean_proximity_ISLAND -<br>longitude -<br>latitude - | Predicted vs. Actual - XGBoost |           |           |  |  |  |
| Actual Values<br>0.0 0.1 0.2 0.3 0.4 0.5 0.6<br>Importance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |           |           |  |  |  |

# **Additional Feedback?**

Chelle Davies (<u>chelle.davies@ischool.berkeley.edu)</u>

Ziyad Amer (<u>zaa4uf@ischool.berkeley.edu</u>)