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Lab 4: Report

Building a Digital Communication System


For the Culminating Design Experience portion of  this course (i.e. Lab 4 of  ECE 4670), I 

have built my own communication system that transmits the signal via. CommCloud software. 

This document contains: (1) the standard of  this communication design, (2) principles of  design 

for the encoder and decoder, and (3) a quantitative analysis of  the performance of  this lab.


This system encodes a signal of  length Nb bits into Nenc symbols (sample length Nsample) 

encoded via Orthogonal frequency-division multiplexing (“ODFM”) combined with On-Off  

Keying (“OOK”). 


ODFM is a method of  digital transmission of  data which uses “eigenvectors instead of  

singular vectors to pre- and post-distort”. (Lab 4 handout) For the purposes of  this system, this 

definition implies that we can define a set of  known parameters for signal measurements that 

hold true for the signal being transmitted at all stages of  this system. This is because ODFM pre- 

and post-distorts a signal using eigenvectors, which remain the same for a circulant matrix and 

therefore do not vary with the impulse response of  the system. Due to this property, we do not 

have to account for fluctuations associated with the impulse response; all other parameter values 

and their dimensions can be determined by design. 


The role of  OOK in this communication system is designing the encoding process of  the 

system such that the bits are grouped and then translated into symbols that either equate to 0 or a 

complex-valued symbol. I have chosen to constrain the magnitude A of  the symbols transmitted 

in this system to remain constant as the phase of  each symbol is calculated. Symbols which 

correspond with a low Signal to Noise Ratio (“SNR”), i.e. symbols which contain more noise 

than it does desired signal information, will be optimized in order to conserve transmission power 

as appropriate.
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Communication Standard: ODFM-OOK System

The following diagram illustrates the encoding process of  this system:
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Figure 1: An illustration of  the process of  encoding an input signal using ODFM and OOK 
methodologies, which contains Nb,tot bits, into a signal containing Nenc symbols comprising a 
vector of  sample length Nsample.


As the above diagram illustrated, an input signal X is transmitted by first learning the 

channel by finding the first column of  the circulant matrix for this system using X, and setting the 

channel parameters for measuring the significant points in the signal X. Once this has been done, 

we now prepare the system to do the encoding. Part of  this preparation is defining the symbol 

that will represent these encoded bits using the following form:





Now, the system iterates through all of  the bits in X, and repeats the following steps to 

assign and encode the bits to generate a transmittable signal Xsymbols:


1. The batch is constructed. To construct the batch, there are 3 main features that are 

put together to comprise this vector: (a) the “zero frequency term,” where the first symbol 

of  the main part of  the batch is set to 0; (b) the element-wise multiplication of  the group 

of  Nb bits to be encoded in a batch with the symbol S; and (c) the flipped conjugate of  (b).


2. Take the inverse FFT of  the batch that was constructed in the previous step.


3. Calculate the prefix of  the batch by taking the symbols from the batch that fall 

within the positions in the range of  (Ns+n+)+1 to (Ns-1)+1, and then prepend this prefix 

to the batch.


4. Add the components of  resulting batch to the full vector of  encoded bits.


Once the above steps have been completed, we have the fully encoded vector of  the signal 

X. Finally, we prepare the encoded signal for transmission by prepending a pilot vector of  Ns 1s 

to the encoded signal, and then padding this pilot+encoded signal vector with 50000 zeros at the 

beginning and 50000 zeros at the end. The result is a vector that is ready to be converted to an 

audio (.wav) file to be transmitted from the encoder function.


This design assumes the following facts to hold true throughout the transmission process:


(1) The number of  information symbols to be transmitted in one large “OFDM symbol” 

can be predetermined and set as a reliable constant in spite of  any fluctuations that occur in 

transmission.


S = Amplit u de * ei*ϕX = Amplit u de * ei*(2π*Nb)

ECE 4670 (CDE), LAB 4 REPORT, MDD94 PAGE  OF 4 9



(2) We can predict or rather predetermine the distortion that will occur in the signal’s 

prefix and postfix, and assume that those settings are consistent.


Design Principles

Encoder Design

In the encoder, the main design choice that I made for this part of  the system was to encode the 
bits of  the system all in one go; that is to say, I opted to construct all of  the signal’s batches 
together in one set of  nested loops and then and the padding and pilot signal after the fact but 
prior to transmission, rather than creating and sending the batches one by one. 


My reasoning for making this design choice was because I wanted to observe the impact of  
minimizing and normalizing the impact of  channel fluctuation across different symbols due to 
oddities associated with CommCloud tendency of  truncating symbols as much as possible by 
making sure that the data was plentiful; I was concerned that transmitting only one bit at a time 
on CommCloud would worsen the impact of  sending short signals via CommCloud on each 
individual batch, even after using padding to lessen the effects.


The cost of  making this design choice may have contributed to the oddities in the length of  the 
decoded signal being a complete mismatch to that of  the signal inputted into the encoder. Due to 
the fact that any unavoidable truncation due to CommCloud is happening non-uniformly and it’s 
unpredictable, it is that much more challenging to account for changes in the spacing between th 
symbols and the batches.


Decoder Design

The outline of  my decoder’s design is as follows:


1. Recall the known parameters set as system properties as before.


2. Calculate the value of  the symbols used to encode the original vector using some of  the 
known parameters.


3. Grab the received signal’s audio file and write the data to a vector.


4. Calculate the number of  samples per OFDM symbol.


5. Using the value from step 4 and the length of  the received signal data vector from step 3, 
obtain the number of  OFDM symbols to iterate through.


6. For each OFDM symbol, repeat the following steps until we have gone through all 
OFDM symbols:


1. Use a defined power threshold to determine where the start of  a symbol is located.


1. If  the value of  this position is infinite, remove symbols with a low signal to noise 
ratio.
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2. Define (predictive) beginning and ending positions for the region of  the OFDM 
symbol.


3. Decode the OFDM symbol:


1. Use a defined power threshold to determine the region to be decoded.


2. Delete the batch’s prefix.


3. Get the complex component of  the symbols.


4. For each batch:


1. Define region of  signal to avoid operating on (prefix).


2. Delete this region.


3. Use On Off  Keying to decode the remaining, desired portion of  the signal.


4. Place the result of  step 6.3.4.3 in the decoder’s output 


4. Add the decoded bits to the output vector of  the decoder function;


7. Remove any remaining symbols which may be associated with a low signal to noise ratio.


8. Return the resulting decoded signal of  bits.


In the decoder design, the key design decisions that I made here were to (1) capture the output of  
the transmission right in the decoder function, (2) using a power threshold to locate the symbols 
in the received signal, (3) deviating from the encoder’s design by decoding the whole signal step 
by step, symbol by symbol, and finally, (4) electing to forego using the symbols associated with a 
low signal to noise ratio. All of  these decisions were ultimately made in order to allow me to 
attempt to optimize the performance metrics for my system, but each of  these decisions takes a 
different group of  metrics into consideration.


For instance, electing to forego using the symbols associated with a low signal to noise ratio was 
an important design choice because it helps to improve performance by allowing the system to 
conserve power that it would otherwise expend on less significant symbols that do not impact that 
data being returned with the same urgency.


Deviating from the encoder’s design by decoding the whole signal step by step, symbol by symbol,       
was a choice made in order to ensurer a lesser chance of  bit errors by applying the decoding to 
smaller groups at a time.


Using a power threshold to locate the symbols in the received signal made sense because we can 
assume that regions of  lower power (below threshold) precede regions where more power (above 
threshold) is required for the symbol, so power levels make for an ideal indicator of  where to start 
defining regions in the signal to decode.


Finally, the reason that I want to capture the output of  the transmission right in the decoder 
function is so that the decoders call limit the number of  retransmissions that occur for this lab.
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Results: Performance Analysis of  the System

Regrettably, I ended up with a communication system that successfully performs the 

mechanism of  the individual steps of  building and deconstructing a decoded symbol as well as 

attempts to improve, but doesn’t seem to return the same number of  bits as the system receives at 

the encoder, regardless of  the length of  the input vector and regardless of  the number of  total 

iterations run for this system. I.e., my signal is off  in terms of  length by at least a couple thousand 

bits every time. After speaking to and reviewing this system with Professor Doerschuk taking the 

time constraint and limitations of  a one-person group into account, I have resolved to analyze 

the system that I have as is with the metrics I have obtained from testing my code, and then 

predict the performance metric trends based off  of  what I have.

>> lab4_monte_carlo


% encoder


encoded size


      430200           1


Size of X (-> tx.wav)


      532351           1

% decoder


# samplespersym


       15057


length(Y_bar)


      524283


# ODFM Symbols


    35

Number 
of  runs

nextODFMsample 
position

Size of  
Y_bar

beginning 
of  range

ending of  
range

Current symbol that 
program points to:

1 1 535206 1 15057 1

2 12916 535206 12916 27972 2

3 25831 535206 25831 40887 3

4 38746 535206 38746 53802 4

5 51661 535206 51661 66717 5

6 64576 535206 64576 79632 6

7 77491 535206 77491 92547 7

8 90406 535206 90406 105462 8

9 103321 535206 103321 118377 9

10 116236 535206 116236 131292 10

11 129151 535206 129151 144207 11

Number 
of  runs
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Figure 2: Code output and table(s) depicting the results obtained by this system for running 
using Monte Carlo for tot=10 iterations.


Data Rate Metric

I was able to get a data rate metric in spite of  the mismatching in dimensions.


For the value of  R0 (the data rate in terms of  units of  bits/sample), the average data rate 
obtained by the system was 0.375 bits/sample.


For the value of  R1 (the data rate in terms of  units of  bits/second), the average data rate 
obtained by the system was 16568 bits/second.


Evaluating R1, I can see that the the data rate for the system was a reasonable, but not most 
optimal for the constraints of  the system designed.


Bit Error Probability Metric

Computing this metric was a bit difficult for me due to the challenges that I described earlier in 
this section. After much deliberation and testing, I have noticed that the lowest error I have 
managed to obtain in this setup was 0.54 due to this incorrect random offset that I can’t seem to 
get rid of, so I have opted to use the best scenario and the worst case value I got was 99998, and 
obtain a range of  possible ranges for the Overall Performance Metric, just for the sake of  being 
able to get a value of  an Overall Performance Metric to analyze so that I have a value to work 
with.


Transmitter Power Metric

The average power metric obtained for this system reached a value of  0.812154. There seems to 
be a higher transmission power metric for my lab4 setup than I observed for my lab3 setup, 
which suggests that my signal is traveling to the decoder with a heightened strength. This is not 
unexpected for ODFM systems.


Overall Performance Metric

The value that I obtained for this metric using the best-case error value of  0.54 was M = 
0.000578.


12 142066 535206 142066 157122 12

13 154981 535206 154981 170037 13

14 167896 535206 167896 182952 14

15 180811 535206 180811 195867 15

… …

36 452026 535206 452026 467082 36

nextODFMsample 
position

Size of  
Y_bar

beginning 
of  range

ending of  
range

Current symbol that 
program points to:

Number 
of  runs
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The value that I obtained for this metric using the worst-case error value of  99998 was M = ~0.


While neither of  these results are most optimal for ODFM, I started with an error rate with 
~101250 wrong bits per run, so this is an improvement if  you consider that perspective. Still, my 
results are unfortunately unstable. I was told that whatever is wrong is not very obvious based on 
the encoder/decoder logic, so that is where I left off.


Conclusion & Final Remarks

Overall, in the process of  developing this OFDM communication system, a valuable lesson 

learned was about the harsh realities of  communication systems design. Although a system may 

be well designed in theory in terms of  its encoder and its decoder, there is an aspect of  

uncertainty in how well that system will perform in practice for different iterations of  a system 

run. With this system, I often found that certain processes that I would expect to work in theory, 

would not work for my system because the actual measurements (e.g. measurements between my 

OFDM symbols) were off  sometimes despite my best efforts to predict the locations of  the 

symbols, areas with a low Signal to Noise Ratio, and the prefixes of  the symbol’s batches. 

Regardless, I ended up with a reasonable system in terms of  the mechanics of  the transmission 

process and theoretical performance.
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