
Developing an ODFM-OOK
Communication System

ECE 4670, Spring 2022

Michelle Davies (mdd94)

ECE B.Sc, Class of 2022

May 9th, 2022

ECE 4670 (CDE), LAB 4 REPORT, MDD94 PAGE OF 1 9

Michelle Davies (mdd94)

ECE 4670 (Lab 4 Report)

May 9, 2022

Lab 4: Report

Building a Digital Communication System

For the Culminating Design Experience portion of this course (i.e. Lab 4 of ECE 4670), I

have built my own communication system that transmits the signal via. CommCloud software.

This document contains: (1) the standard of this communication design, (2) principles of design

for the encoder and decoder, and (3) a quantitative analysis of the performance of this lab.

This system encodes a signal of length Nb bits into Nenc symbols (sample length Nsample)

encoded via Orthogonal frequency-division multiplexing (“ODFM”) combined with On-Off

Keying (“OOK”).

ODFM is a method of digital transmission of data which uses “eigenvectors instead of

singular vectors to pre- and post-distort”. (Lab 4 handout) For the purposes of this system, this

definition implies that we can define a set of known parameters for signal measurements that

hold true for the signal being transmitted at all stages of this system. This is because ODFM pre-

and post-distorts a signal using eigenvectors, which remain the same for a circulant matrix and

therefore do not vary with the impulse response of the system. Due to this property, we do not

have to account for fluctuations associated with the impulse response; all other parameter values

and their dimensions can be determined by design.

The role of OOK in this communication system is designing the encoding process of the

system such that the bits are grouped and then translated into symbols that either equate to 0 or a

complex-valued symbol. I have chosen to constrain the magnitude A of the symbols transmitted

in this system to remain constant as the phase of each symbol is calculated. Symbols which

correspond with a low Signal to Noise Ratio (“SNR”), i.e. symbols which contain more noise

than it does desired signal information, will be optimized in order to conserve transmission power

as appropriate.

ECE 4670 (CDE), LAB 4 REPORT, MDD94 PAGE OF 2 9

Communication Standard: ODFM-OOK System

The following diagram illustrates the encoding process of this system:

ECE 4670 (CDE), LAB 4 REPORT, MDD94 PAGE OF 3 9

Figure 1: An illustration of the process of encoding an input signal using ODFM and OOK
methodologies, which contains Nb,tot bits, into a signal containing Nenc symbols comprising a
vector of sample length Nsample.

As the above diagram illustrated, an input signal X is transmitted by first learning the

channel by finding the first column of the circulant matrix for this system using X, and setting the

channel parameters for measuring the significant points in the signal X. Once this has been done,

we now prepare the system to do the encoding. Part of this preparation is defining the symbol

that will represent these encoded bits using the following form:

Now, the system iterates through all of the bits in X, and repeats the following steps to

assign and encode the bits to generate a transmittable signal Xsymbols:

1. The batch is constructed. To construct the batch, there are 3 main features that are

put together to comprise this vector: (a) the “zero frequency term,” where the first symbol

of the main part of the batch is set to 0; (b) the element-wise multiplication of the group

of Nb bits to be encoded in a batch with the symbol S; and (c) the flipped conjugate of (b).

2. Take the inverse FFT of the batch that was constructed in the previous step.

3. Calculate the prefix of the batch by taking the symbols from the batch that fall

within the positions in the range of (Ns+n+)+1 to (Ns-1)+1, and then prepend this prefix

to the batch.

4. Add the components of resulting batch to the full vector of encoded bits.

Once the above steps have been completed, we have the fully encoded vector of the signal

X. Finally, we prepare the encoded signal for transmission by prepending a pilot vector of Ns 1s

to the encoded signal, and then padding this pilot+encoded signal vector with 50000 zeros at the

beginning and 50000 zeros at the end. The result is a vector that is ready to be converted to an

audio (.wav) file to be transmitted from the encoder function.

This design assumes the following facts to hold true throughout the transmission process:

(1) The number of information symbols to be transmitted in one large “OFDM symbol”

can be predetermined and set as a reliable constant in spite of any fluctuations that occur in

transmission.

S = Amplit u de * ei*ϕX = Amplit u de * ei*(2π*Nb)

ECE 4670 (CDE), LAB 4 REPORT, MDD94 PAGE OF 4 9

(2) We can predict or rather predetermine the distortion that will occur in the signal’s

prefix and postfix, and assume that those settings are consistent.

Design Principles

Encoder Design

In the encoder, the main design choice that I made for this part of the system was to encode the
bits of the system all in one go; that is to say, I opted to construct all of the signal’s batches
together in one set of nested loops and then and the padding and pilot signal after the fact but
prior to transmission, rather than creating and sending the batches one by one.

My reasoning for making this design choice was because I wanted to observe the impact of
minimizing and normalizing the impact of channel fluctuation across different symbols due to
oddities associated with CommCloud tendency of truncating symbols as much as possible by
making sure that the data was plentiful; I was concerned that transmitting only one bit at a time
on CommCloud would worsen the impact of sending short signals via CommCloud on each
individual batch, even after using padding to lessen the effects.

The cost of making this design choice may have contributed to the oddities in the length of the
decoded signal being a complete mismatch to that of the signal inputted into the encoder. Due to
the fact that any unavoidable truncation due to CommCloud is happening non-uniformly and it’s
unpredictable, it is that much more challenging to account for changes in the spacing between th
symbols and the batches.

Decoder Design

The outline of my decoder’s design is as follows:

1. Recall the known parameters set as system properties as before.

2. Calculate the value of the symbols used to encode the original vector using some of the
known parameters.

3. Grab the received signal’s audio file and write the data to a vector.

4. Calculate the number of samples per OFDM symbol.

5. Using the value from step 4 and the length of the received signal data vector from step 3,
obtain the number of OFDM symbols to iterate through.

6. For each OFDM symbol, repeat the following steps until we have gone through all
OFDM symbols:

1. Use a defined power threshold to determine where the start of a symbol is located.

1. If the value of this position is infinite, remove symbols with a low signal to noise
ratio.

ECE 4670 (CDE), LAB 4 REPORT, MDD94 PAGE OF 5 9

2. Define (predictive) beginning and ending positions for the region of the OFDM
symbol.

3. Decode the OFDM symbol:

1. Use a defined power threshold to determine the region to be decoded.

2. Delete the batch’s prefix.

3. Get the complex component of the symbols.

4. For each batch:

1. Define region of signal to avoid operating on (prefix).

2. Delete this region.

3. Use On Off Keying to decode the remaining, desired portion of the signal.

4. Place the result of step 6.3.4.3 in the decoder’s output

4. Add the decoded bits to the output vector of the decoder function;

7. Remove any remaining symbols which may be associated with a low signal to noise ratio.

8. Return the resulting decoded signal of bits.

In the decoder design, the key design decisions that I made here were to (1) capture the output of
the transmission right in the decoder function, (2) using a power threshold to locate the symbols
in the received signal, (3) deviating from the encoder’s design by decoding the whole signal step
by step, symbol by symbol, and finally, (4) electing to forego using the symbols associated with a
low signal to noise ratio. All of these decisions were ultimately made in order to allow me to
attempt to optimize the performance metrics for my system, but each of these decisions takes a
different group of metrics into consideration.

For instance, electing to forego using the symbols associated with a low signal to noise ratio was
an important design choice because it helps to improve performance by allowing the system to
conserve power that it would otherwise expend on less significant symbols that do not impact that
data being returned with the same urgency.

Deviating from the encoder’s design by decoding the whole signal step by step, symbol by symbol,
was a choice made in order to ensurer a lesser chance of bit errors by applying the decoding to
smaller groups at a time.

Using a power threshold to locate the symbols in the received signal made sense because we can
assume that regions of lower power (below threshold) precede regions where more power (above
threshold) is required for the symbol, so power levels make for an ideal indicator of where to start
defining regions in the signal to decode.

Finally, the reason that I want to capture the output of the transmission right in the decoder
function is so that the decoders call limit the number of retransmissions that occur for this lab.

ECE 4670 (CDE), LAB 4 REPORT, MDD94 PAGE OF 6 9

Results: Performance Analysis of the System

Regrettably, I ended up with a communication system that successfully performs the

mechanism of the individual steps of building and deconstructing a decoded symbol as well as

attempts to improve, but doesn’t seem to return the same number of bits as the system receives at

the encoder, regardless of the length of the input vector and regardless of the number of total

iterations run for this system. I.e., my signal is off in terms of length by at least a couple thousand

bits every time. After speaking to and reviewing this system with Professor Doerschuk taking the

time constraint and limitations of a one-person group into account, I have resolved to analyze

the system that I have as is with the metrics I have obtained from testing my code, and then

predict the performance metric trends based off of what I have.

>> lab4_monte_carlo

% encoder

encoded size

 430200 1

Size of X (-> tx.wav)

 532351 1

% decoder

samplespersym

 15057

length(Y_bar)

 524283

ODFM Symbols

 35

Number
of runs

nextODFMsample
position

Size of
Y_bar

beginning
of range

ending of
range

Current symbol that
program points to:

1 1 535206 1 15057 1

2 12916 535206 12916 27972 2

3 25831 535206 25831 40887 3

4 38746 535206 38746 53802 4

5 51661 535206 51661 66717 5

6 64576 535206 64576 79632 6

7 77491 535206 77491 92547 7

8 90406 535206 90406 105462 8

9 103321 535206 103321 118377 9

10 116236 535206 116236 131292 10

11 129151 535206 129151 144207 11

Number
of runs

ECE 4670 (CDE), LAB 4 REPORT, MDD94 PAGE OF 7 9

Figure 2: Code output and table(s) depicting the results obtained by this system for running
using Monte Carlo for tot=10 iterations.

Data Rate Metric

I was able to get a data rate metric in spite of the mismatching in dimensions.

For the value of R0 (the data rate in terms of units of bits/sample), the average data rate
obtained by the system was 0.375 bits/sample.

For the value of R1 (the data rate in terms of units of bits/second), the average data rate
obtained by the system was 16568 bits/second.

Evaluating R1, I can see that the the data rate for the system was a reasonable, but not most
optimal for the constraints of the system designed.

Bit Error Probability Metric

Computing this metric was a bit difficult for me due to the challenges that I described earlier in
this section. After much deliberation and testing, I have noticed that the lowest error I have
managed to obtain in this setup was 0.54 due to this incorrect random offset that I can’t seem to
get rid of, so I have opted to use the best scenario and the worst case value I got was 99998, and
obtain a range of possible ranges for the Overall Performance Metric, just for the sake of being
able to get a value of an Overall Performance Metric to analyze so that I have a value to work
with.

Transmitter Power Metric

The average power metric obtained for this system reached a value of 0.812154. There seems to
be a higher transmission power metric for my lab4 setup than I observed for my lab3 setup,
which suggests that my signal is traveling to the decoder with a heightened strength. This is not
unexpected for ODFM systems.

Overall Performance Metric

The value that I obtained for this metric using the best-case error value of 0.54 was M =
0.000578.

12 142066 535206 142066 157122 12

13 154981 535206 154981 170037 13

14 167896 535206 167896 182952 14

15 180811 535206 180811 195867 15

… …

36 452026 535206 452026 467082 36

nextODFMsample
position

Size of
Y_bar

beginning
of range

ending of
range

Current symbol that
program points to:

Number
of runs

ECE 4670 (CDE), LAB 4 REPORT, MDD94 PAGE OF 8 9

The value that I obtained for this metric using the worst-case error value of 99998 was M = ~0.

While neither of these results are most optimal for ODFM, I started with an error rate with
~101250 wrong bits per run, so this is an improvement if you consider that perspective. Still, my
results are unfortunately unstable. I was told that whatever is wrong is not very obvious based on
the encoder/decoder logic, so that is where I left off.

Conclusion & Final Remarks

Overall, in the process of developing this OFDM communication system, a valuable lesson

learned was about the harsh realities of communication systems design. Although a system may

be well designed in theory in terms of its encoder and its decoder, there is an aspect of

uncertainty in how well that system will perform in practice for different iterations of a system

run. With this system, I often found that certain processes that I would expect to work in theory,

would not work for my system because the actual measurements (e.g. measurements between my

OFDM symbols) were off sometimes despite my best efforts to predict the locations of the

symbols, areas with a low Signal to Noise Ratio, and the prefixes of the symbol’s batches.

Regardless, I ended up with a reasonable system in terms of the mechanics of the transmission

process and theoretical performance.

ECE 4670 (CDE), LAB 4 REPORT, MDD94 PAGE OF 9 9

	ECE 4670, Spring 2022
	Communication Standard: ODFM-OOK System
	Design Principles
	Encoder Design
	Decoder Design
	Results: Performance Analysis of the System
	Data Rate Metric
	Bit Error Probability Metric
	Transmitter Power Metric
	Overall Performance Metric
	Conclusion & Final Remarks

